pyspark.sql.functions.desc_nulls_last#
- pyspark.sql.functions.desc_nulls_last(col)[source]#
- Sort Function: Returns a sort expression based on the descending order of the given column name, and null values appear after non-null values. - New in version 2.4.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor str
- target column to sort by in the descending order. 
 
- col
- Returns
- Column
- the column specifying the order. 
 
 - Examples - Example 1: Sorting a DataFrame with null values in descending order - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(0, None), (1, "Bob"), (2, "Alice")], ["age", "name"]) >>> df.sort(sf.desc_nulls_last(df.name)).show() +---+-----+ |age| name| +---+-----+ | 1| Bob| | 2|Alice| | 0| NULL| +---+-----+ - Example 2: Sorting a DataFrame with multiple columns, null values in descending order - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(0, None, "Z"), (1, "Bob", None), (2, "Alice", "Y")], ["age", "name", "grade"]) >>> df.sort(sf.desc_nulls_last(df.name), sf.desc_nulls_last(df.grade)).show() +---+-----+-----+ |age| name|grade| +---+-----+-----+ | 1| Bob| NULL| | 2|Alice| Y| | 0| NULL| Z| +---+-----+-----+ - Example 3: Sorting a DataFrame with null values in descending order using column name string - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(0, None), (1, "Bob"), (2, "Alice")], ["age", "name"]) >>> df.sort(sf.desc_nulls_last("name")).show() +---+-----+ |age| name| +---+-----+ | 1| Bob| | 2|Alice| | 0| NULL| +---+-----+