pyspark.pandas.Series.reset_index#
- Series.reset_index(level=None, drop=False, name=None, inplace=False)[source]#
- Generate a new DataFrame or Series with the index reset. - This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. - Parameters
- levelint, str, tuple, or list, default optional
- For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. 
- dropbool, default False
- Just reset the index, without inserting it as a column in the new DataFrame. 
- nameobject, optional
- The name to use for the column containing the original Series values. Uses self.name by default. This argument is ignored when drop is True. 
- inplacebool, default False
- Modify the Series in place (do not create a new object). 
 
- Returns
- Series or DataFrame
- When drop is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When drop is True, a Series is returned. In either case, if - inplace=True, no value is returned.
 
 - Examples - >>> s = ps.Series([1, 2, 3, 4], index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) - Generate a DataFrame with default index. - >>> s.reset_index() idx 0 0 a 1 1 b 2 2 c 3 3 d 4 - To specify the name of the new column use name. - >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 - To generate a new Series with the default set drop to True. - >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 dtype: int64 - To update the Series in place, without generating a new one set inplace to True. Note that it also requires - drop=True.- >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 dtype: int64