pyspark.pandas.DataFrame.spark.to_table#
- spark.to_table(name, format=None, mode='overwrite', partition_cols=None, index_col=None, **options)#
- Write the DataFrame into a Spark table. - DataFrame.spark.to_table()is an alias of- DataFrame.to_table().- Parameters
- namestr, required
- Table name in Spark. 
- formatstring, optional
- Specifies the output data source format. Some common ones are: - ‘delta’ 
- ‘parquet’ 
- ‘orc’ 
- ‘json’ 
- ‘csv’ 
 
- modestr {‘append’, ‘overwrite’, ‘ignore’, ‘error’, ‘errorifexists’}, default
- ‘overwrite’. Specifies the behavior of the save operation when the table exists already. - ‘append’: Append the new data to existing data. 
- ‘overwrite’: Overwrite existing data. 
- ‘ignore’: Silently ignore this operation if data already exists. 
- ‘error’ or ‘errorifexists’: Throw an exception if data already exists. 
 
- partition_colsstr or list of str, optional, default None
- Names of partitioning columns 
- index_col: str or list of str, optional, default: None
- Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. 
- options
- Additional options passed directly to Spark. 
 
- Returns
- None
 
 - See also - read_table
- DataFrame.spark.to_spark_io
- DataFrame.to_parquet
 - Examples - >>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='ME')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 - >>> df.to_table('%s.my_table' % db, partition_cols='date')