pyspark.pandas.range#
- pyspark.pandas.range(start, end=None, step=1, num_partitions=None)[source]#
- Create a DataFrame with some range of numbers. - The resulting DataFrame has a single int64 column named id, containing elements in a range from - startto- end(exclusive) with step value- step. If only the first parameter (i.e. start) is specified, we treat it as the end value with the start value being 0.- This is like the range function in SparkSession and is used primarily for testing. - Parameters
- startint
- the start value (inclusive) 
- endint, optional
- the end value (exclusive) 
- stepint, optional, default 1
- the incremental step 
- num_partitionsint, optional
- the number of partitions of the DataFrame 
 
- Returns
- DataFrame
 
 - Examples - When the first parameter is specified, we generate a range of values up till that number. - >>> ps.range(5) id 0 0 1 1 2 2 3 3 4 4 - When start, end, and step are specified: - >>> ps.range(start = 100, end = 200, step = 20) id 0 100 1 120 2 140 3 160 4 180