pyspark.pandas.MultiIndex.take#
- MultiIndex.take(indices)#
- Return the elements in the given positional indices along an axis. - This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. - Parameters
- indicesarray-like
- An array of ints indicating which positions to take. 
 
- Returns
- takensame type as caller
- An array-like containing the elements taken from the object. 
 
 - See also - DataFrame.loc
- Select a subset of a DataFrame by labels. 
- DataFrame.iloc
- Select a subset of a DataFrame by positions. 
- numpy.take
- Take elements from an array along an axis. 
 - Examples - Series - >>> psser = ps.Series([100, 200, 300, 400, 500]) >>> psser 0 100 1 200 2 300 3 400 4 500 dtype: int64 - >>> psser.take([0, 2, 4]).sort_index() 0 100 2 300 4 500 dtype: int64 - Index - >>> psidx = ps.Index([100, 200, 300, 400, 500]) >>> psidx Index([100, 200, 300, 400, 500], dtype='int64') - >>> psidx.take([0, 2, 4]).sort_values() Index([100, 300, 500], dtype='int64') - MultiIndex - >>> psmidx = ps.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "c")]) >>> psmidx MultiIndex([('x', 'a'), ('x', 'b'), ('x', 'c')], ) - >>> psmidx.take([0, 2]) MultiIndex([('x', 'a'), ('x', 'c')], )