pyspark.sql.functions.abs#
- pyspark.sql.functions.abs(col)[source]#
- Mathematical Function: Computes the absolute value of the given column or expression. - New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor str
- The target column or expression to compute the absolute value on. 
 
- col
- Returns
- Column
- A new column object representing the absolute value of the input. 
 
 - Examples - Example 1: Compute the absolute value of a negative number - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(1, -1), (2, -2), (3, -3)], ["id", "value"]) >>> df.select(sf.abs(df.value)).show() +----------+ |abs(value)| +----------+ | 1| | 2| | 3| +----------+ - Example 2: Compute the absolute value of an expression - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(1, 1), (2, -2), (3, 3)], ["id", "value"]) >>> df.select(sf.abs(df.id - df.value)).show() +-----------------+ |abs((id - value))| +-----------------+ | 0| | 4| | 0| +-----------------+ - Example 3: Compute the absolute value of a column with null values - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(1, None), (2, -2), (3, None)], ["id", "value"]) >>> df.select(sf.abs(df.value)).show() +----------+ |abs(value)| +----------+ | NULL| | 2| | NULL| +----------+ - Example 4: Compute the absolute value of a column with double values - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(1, -1.5), (2, -2.5), (3, -3.5)], ["id", "value"]) >>> df.select(sf.abs(df.value)).show() +----------+ |abs(value)| +----------+ | 1.5| | 2.5| | 3.5| +----------+