pyspark.sql.DataFrame.withMetadata#
- DataFrame.withMetadata(columnName, metadata)[source]#
- Returns a new - DataFrameby updating an existing column with metadata.- New in version 3.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- columnNamestr
- string, name of the existing column to update the metadata. 
- metadatadict
- dict, new metadata to be assigned to df.schema[columnName].metadata 
 
- Returns
- DataFrame
- DataFrame with updated metadata column. 
 
 - Examples - >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df_meta = df.withMetadata('age', {'foo': 'bar'}) >>> df_meta.schema['age'].metadata {'foo': 'bar'}