DecisionTreeModel#
- class pyspark.mllib.tree.DecisionTreeModel(java_model)[source]#
- A decision tree model for classification or regression. - New in version 1.1.0. - Methods - call(name, *a)- Call method of java_model - depth()- Get depth of tree (e.g. - load(sc, path)- Load a model from the given path. - numNodes()- Get number of nodes in tree, including leaf nodes. - predict(x)- Predict the label of one or more examples. - save(sc, path)- Save this model to the given path. - full model. - Methods Documentation - call(name, *a)#
- Call method of java_model 
 - depth()[source]#
- Get depth of tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). - New in version 1.1.0. 
 - classmethod load(sc, path)#
- Load a model from the given path. - New in version 1.3.0. 
 - predict(x)[source]#
- Predict the label of one or more examples. - New in version 1.1.0. - Parameters
- xpyspark.mllib.linalg.Vectororpyspark.RDD
- Data point (feature vector), or an RDD of data points (feature vectors). 
 
- x
 - Notes - In Python, predict cannot currently be used within an RDD transformation or action. Call predict directly on the RDD instead. 
 - save(sc, path)#
- Save this model to the given path. - New in version 1.3.0.