gapply
gapply.RdGroups the SparkDataFrame using the specified columns and applies the R function to each group.
Usage
gapply(x, ...)
# S4 method for GroupedData
gapply(x, func, schema)
# S4 method for SparkDataFrame
gapply(x, cols, func, schema)Arguments
- x
- a SparkDataFrame or GroupedData. 
- ...
- additional argument(s) passed to the method. 
- func
- a function to be applied to each group partition specified by grouping column of the SparkDataFrame. See Details. 
- schema
- the schema of the resulting SparkDataFrame after the function is applied. The schema must match to output of - func. It has to be defined for each output column with preferred output column name and corresponding data type. Since Spark 2.3, the DDL-formatted string is also supported for the schema.
- cols
- grouping columns. 
Details
func is a function of two arguments. The first, usually named key
(though this is not enforced) corresponds to the grouping key, will be an
unnamed list of length(cols) length-one objects corresponding
to the grouping columns' values for the current group.
The second, herein x, will be a local data.frame with the
columns of the input not in cols for the rows corresponding to key.
The output of func must be a data.frame matching schema --
in particular this means the names of the output data.frame are irrelevant
See also
Other SparkDataFrame functions: 
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapplyCollect(),
dapply(),
describe(),
dim(),
distinct(),
dropDuplicates(),
dropna(),
drop(),
dtypes(),
exceptAll(),
except(),
explain(),
filter(),
first(),
gapplyCollect(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersectAll(),
intersect(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
merge(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartitionByRange(),
repartition(),
rollup(),
sample(),
saveAsTable(),
schema(),
selectExpr(),
select(),
showDF(),
show(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
unionAll(),
unionByName(),
union(),
unpersist(),
unpivot(),
withColumn(),
withWatermark(),
with(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
Examples
if (FALSE) {
# Computes the arithmetic mean of the second column by grouping
# on the first and third columns. Output the grouping values and the average.
df <- createDataFrame (
list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
  c("a", "b", "c", "d"))
# Here our output contains three columns, the key which is a combination of two
# columns with data types integer and string and the mean which is a double.
schema <- structType(structField("a", "integer"), structField("c", "string"),
  structField("avg", "double"))
result <- gapply(
  df,
  c("a", "c"),
  function(key, x) {
    # key will either be list(1L, '1') (for the group where a=1L,c='1') or
    #   list(3L, '3') (for the group where a=3L,c='3')
    y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# The schema also can be specified in a DDL-formatted string.
schema <- "a INT, c STRING, avg DOUBLE"
result <- gapply(
  df,
  c("a", "c"),
  function(key, x) {
    y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
# We can also group the data and afterwards call gapply on GroupedData.
# For example:
gdf <- group_by(df, "a", "c")
result <- gapply(
  gdf,
  function(key, x) {
    y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
collect(result)
# Result
# ------
# a c avg
# 3 3 3.0
# 1 1 1.5
# Fits linear models on iris dataset by grouping on the 'Species' column and
# using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
# and 'Petal_Width' as training features.
df <- createDataFrame (iris)
schema <- structType(structField("(Intercept)", "double"),
  structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
  structField("Petal_Width", "double"))
df1 <- gapply(
  df,
  df$"Species",
  function(key, x) {
    m <- suppressWarnings(lm(Sepal_Length ~
    Sepal_Width + Petal_Length + Petal_Width, x))
    data.frame(t(coef(m)))
  }, schema)
collect(df1)
# Result
# ---------
# Model  (Intercept)  Sepal_Width  Petal_Length  Petal_Width
# 1        0.699883    0.3303370    0.9455356    -0.1697527
# 2        1.895540    0.3868576    0.9083370    -0.6792238
# 3        2.351890    0.6548350    0.2375602     0.2521257
}